Exercise 2

Determine the nature of the following equations and reduce them to canonical form:
(a) $x^{2} u_{x x}+4 x y u_{x y}+y^{2} u_{y y}=0$
(b) $u_{x x}-x u_{y y}=0$
(c) $u_{x x}-2 u_{x y}+3 u_{y y}+24 u_{y}+5 u=0$
(d) $u_{x x}+\operatorname{sech}^{4} x u_{y y}=0$
(e) $u_{x x}+6 y u_{x y}+9 y^{2} u_{y y}+4 u=0$
(f) $u_{x x}-\operatorname{sech}^{4} x u_{y y}=0$
(g) $u_{x x}+2 \csc y u_{x y}+\csc ^{2} y u_{y y}=0$
(h) $u_{x x}-5 u_{x y}+5 u_{y y}=0$

Solution

Part (a)

$x^{2} u_{x x}+4 x y u_{x y}+y^{2} u_{y y}=0$
Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=x^{2}, B=4 x y, C=y^{2}, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2 x^{2}}\left(4 x y \pm \sqrt{16 x^{2} y^{2}-4 x^{2} y^{2}}\right) \\
& \frac{d y}{d x}=\frac{1}{2 x^{2}}(4 x y \pm 2 x y \sqrt{3}) \\
& \frac{d y}{d x}=\frac{y}{x}(2 \pm \sqrt{3}) .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=12 x^{2} y^{2}$, is greater than 0 for all x and y, which means that the PDE is hyperbolic. The solutions to the ordinary differential equations are therefore two distinct families of real characteristic curves in the $x y$-plane. Separating variables and integrating the equations, we find that

$$
\ln |y|=(2 \pm \sqrt{3}) \ln |x|+C_{0} .
$$

Exponentiating both sides gives us the characteristic curves:

$$
y(x)=A_{0}|x|^{(2 \pm \sqrt{3})} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with } 2-\sqrt{3}: & C_{0}=\ln |y|-(2-\sqrt{3}) \ln |x|=\phi(x, y) \\
\text { Working with } 2+\sqrt{3}: & C_{0}=\ln |y|-(2+\sqrt{3}) \ln |x|=\psi(x, y) .
\end{array}
$$

Now we make the change of variables, $\xi=\phi(x, y)=\ln |y|-(2-\sqrt{3}) \ln |x|$ and $\eta=\psi(x, y)=$ $\ln |y|-(2+\sqrt{3}) \ln |x|$, so that the PDE takes the simplest form. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*},
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, B^{*}=-12, C^{*}=0$, $D^{*}=1-\sqrt{3}, E^{*}=1+\sqrt{3}, F^{*}=0$, and $G^{*}=0$. Thus, the PDE simplifies to

$$
-12 u_{\xi \eta}+(1-\sqrt{3}) u_{\xi}+(1+\sqrt{3}) u_{\eta}=0 .
$$

Solving for $u_{\xi \eta}$ gives

$$
u_{\xi \eta}=\frac{1}{12}\left[(1-\sqrt{3}) u_{\xi}+(1+\sqrt{3}) u_{\eta}\right] .
$$

This is the first canonical form of the hyperbolic PDE. To get the second canonical form, we have to make the additional change of variables, $\alpha=\xi+\eta$ and $\beta=\xi-\eta$. The chain rule gives $u_{\xi \eta}=u_{\alpha \alpha}-u_{\beta \beta}, u_{\xi}=u_{\alpha}+u_{\beta}$, and $u_{\eta}=u_{\alpha}-u_{\beta}$. The PDE becomes

$$
u_{\alpha \alpha}-u_{\beta \beta}=\frac{1}{6}\left(u_{\alpha}-\sqrt{3} u_{\beta}\right) .
$$

This is the second canonical form of the hyperbolic PDE.

Part (b)

$$
u_{x x}-x u_{y y}=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=0, C=-x, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}(\pm \sqrt{4 x}) \\
& \frac{d y}{d x}= \pm \sqrt{x} .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=4 x$, can be positive, zero, or negative, depending on whether $x>0, x=0$, or $x<0$, respectively. That is,

$$
\text { The PDE is } \begin{cases}\text { hyperbolic } & \text { if } x>0 \\ \text { parabolic } & \text { if } x=0 \\ \text { elliptic } & \text { if } x<0\end{cases}
$$

Let us consider each case individually.
Case I: The PDE is hyperbolic $(x>0)$
The solutions to these ordinary differential equations are two distinct families of real characteristic curves in the $x y$-plane. Integrating the equations, we find that

$$
y(x)= \pm \frac{2}{3} x^{3 / 2}+C_{0} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-\frac{2}{3} x^{3 / 2}: & C_{0}=y+\frac{2}{3} x^{3 / 2}=\phi(x, y) \\
\text { Working with }+\frac{2}{3} x^{3 / 2}: & C_{0}=y-\frac{2}{3} x^{3 / 2}=\psi(x, y) .
\end{array}
$$

Now we make the change of variables, $\xi=\phi(x, y)=y+\frac{2}{3} x^{3 / 2}$ and $\eta=\psi(x, y)=y-\frac{2}{3} x^{3 / 2}$, so that the PDE takes the simplest form. Solving these two equations for x and y gives $x^{3 / 2}=\frac{3}{4}(\xi-\eta)$ and $y=\frac{1}{2}(\xi+\eta)$. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*}
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, B^{*}=-4 x$, $C^{*}=0, D^{*}=\frac{1}{2 \sqrt{x}}, E^{*}=-\frac{1}{2 \sqrt{x}}, F^{*}=0$, and $G^{*}=0$. Thus, the PDE simplifies to

$$
-4 x u_{\xi \eta}+\frac{1}{2 \sqrt{x}} u_{\xi}-\frac{1}{2 \sqrt{x}} u_{\eta}=0 .
$$

Solving now for $u_{\xi \eta}$ gives

$$
u_{\xi \eta}=\frac{1}{8 x^{3 / 2}}\left(u_{\xi}-u_{\eta}\right),
$$

which is

$$
u_{\xi \eta}=\frac{1}{6(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right) .
$$

This is the first canonical form of the hyperbolic PDE. To get the second canonical form, we have to make the additional change of variables, $\alpha=\xi+\eta$ and $\beta=\xi-\eta$. The chain rule gives $u_{\xi \eta}=u_{\alpha \alpha}-u_{\beta \beta}, u_{\xi}=u_{\alpha}+u_{\beta}$, and $u_{\eta}=u_{\alpha}-u_{\beta}$. Changing variables gives us

$$
u_{\alpha \alpha}-u_{\beta \beta}=\frac{1}{3 \beta} u_{\beta} .
$$

This is the second canonical form of the hyperbolic PDE.

Case II: The PDE is parabolic $(x=0)$

Substituting $x=0$ into the PDE reduces it immediately to the canonical form of a parabolic equation, $u_{x x}=0$. The characteristic equations reduce to

$$
\frac{d y}{d x}=0 .
$$

The characteristic curves in the $x y$-plane are lines parallel to the x-axis, $y(x)=C_{0}$, where C_{0} is an arbitrary constant.

Case III: The PDE is elliptic $(x<0)$

The characteristic equations have no real solutions for $x<0$. This means that the two distinct families of characteristic curves lie in the complex plane. Integrating the characteristic equations, we find that

$$
\frac{d y}{d x}= \pm i \sqrt{x}
$$

$$
y(x)= \pm \frac{2 i}{3} x^{3 / 2}+C_{0} .
$$

Solving for the constant of integration, C_{0} (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-\frac{2 i}{3} x^{3 / 2}: & C_{0}=y+\frac{2 i}{3} x^{3 / 2}=\phi(x, y) \\
\text { Working with }+\frac{2 i}{3} x^{3 / 2}: & C_{0}=y-\frac{2 i}{3} x^{3 / 2}=\psi(x, y) .
\end{array}
$$

Because $\xi=\phi(x, y)=y+\frac{2 i}{3} x^{3 / 2}$ and $\eta=\psi(x, y)=y-\frac{2 i}{3} x^{3 / 2}$ are complex conjugates of one another, we introduce the new real variables ${ }^{1}$,

$$
\begin{aligned}
& \alpha=\frac{\xi+\eta}{2}=y \\
& \beta=\frac{\xi-\eta}{2 i}=\frac{2}{3}(-x)^{3 / 2},
\end{aligned}
$$

which transform the PDE to the canonical form. After changing variables $(x, y) \rightarrow(\alpha, \beta)$, the PDE becomes

$$
A^{* *} u_{\alpha \alpha}+B^{* *} u_{\alpha \beta}+C^{* *} u_{\beta \beta}+D^{* *} u_{\alpha}+E^{* *} u_{\beta}+F^{* *} u=G^{* *},
$$

where, using the chain rule,

$$
\begin{aligned}
& A^{* *}=A \alpha_{x}^{2}+B \alpha_{x} \alpha_{y}+C \alpha_{y}^{2} \\
& B^{* *}=2 A \alpha_{x} \beta_{x}+B\left(\alpha_{x} \beta_{y}+\alpha_{y} \beta_{x}\right)+2 C \alpha_{y} \beta_{y} \\
& C^{* *}=A \beta_{x}^{2}+B \beta_{x} \beta_{y}+C \beta_{y}^{2} \\
& D^{* *}=A \alpha_{x x}+B \alpha_{x y}+C \alpha_{y y}+D \alpha_{x}+E \alpha_{y} \\
& E^{* *}=A \beta_{x x}+B \beta_{x y}+C \beta_{y y}+D \beta_{x}+E \beta_{y} \\
& F^{* *}=F \\
& G^{* *}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{* *}=-x, B^{* *}=0$, $C^{* *}=-x, D^{* *}=0, E^{* *}=\frac{1}{2 \sqrt{-x}}, F^{* *}=0$, and $G^{* *}=0$. Thus, the PDE simplifies to

$$
\begin{gathered}
-x u_{\alpha \alpha}-x u_{\beta \beta}+\frac{1}{2 \sqrt{-x}} u_{\beta}=0 \\
u_{\alpha \alpha}+u_{\beta \beta}=-\frac{1}{2(-x)^{3 / 2}} u_{\beta},
\end{gathered}
$$

which is

$$
u_{\alpha \alpha}+u_{\beta \beta}=-\frac{1}{3 \beta} u_{\beta} .
$$

This is the canonical form of the elliptic PDE.

[^0]
Part (c)

$$
u_{x x}-2 u_{x y}+3 u_{y y}+24 u_{y}+5 u=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=-2, C=3, D=0, E=24, F=5$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}(-2 \pm \sqrt{4-12}) \\
& \frac{d y}{d x}=\frac{1}{2}(-2 \pm 2 i \sqrt{2}) \\
& \frac{d y}{d x}=-1 \pm i \sqrt{2} .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=4-12=-8$, is less than 0 , which means that the PDE is elliptic for all x and y. Therefore, the solutions to the ordinary differential equations are two distinct families of characteristic curves that lie in the complex plane. Integrating the characteristic equations, we find that

$$
y(x)=(-1 \pm i \sqrt{2}) x+C_{0} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-i \sqrt{2}: & C_{0}=y+x+i x \sqrt{2}=\phi(x, y) \\
\text { Working with }+i \sqrt{2}: & C_{0}=y+x-i x \sqrt{2}=\psi(x, y) .
\end{array}
$$

Since $\xi=\phi(x, y)=y+x+i x \sqrt{2}$ and $\eta=\psi(x, y)=y+x-i x \sqrt{2}$ are complex conjugates of one another, we introduce the new real variables,

$$
\begin{aligned}
& \alpha=\frac{\xi+\eta}{2}=y+x \\
& \beta=\frac{\xi-\eta}{2 i}=x \sqrt{2},
\end{aligned}
$$

which transform the PDE to the canonical form. After changing variables $(x, y) \rightarrow(\alpha, \beta)$, the PDE becomes

$$
A^{* *} u_{\alpha \alpha}+B^{* *} u_{\alpha \beta}+C^{* *} u_{\beta \beta}+D^{* *} u_{\alpha}+E^{* *} u_{\beta}+F^{* *} u=G^{* *},
$$

where, using the chain rule,

$$
\begin{aligned}
& A^{* *}=A \alpha_{x}^{2}+B \alpha_{x} \alpha_{y}+C \alpha_{y}^{2} \\
& B^{* *}=2 A \alpha_{x} \beta_{x}+B\left(\alpha_{x} \beta_{y}+\alpha_{y} \beta_{x}\right)+2 C \alpha_{y} \beta_{y} \\
& C^{* *}=A \beta_{x}^{2}+B \beta_{x} \beta_{y}+C \beta_{y}^{2} \\
& D^{* *}=A \alpha_{x x}+B \alpha_{x y}+C \alpha_{y y}+D \alpha_{x}+E \alpha_{y} \\
& E^{* *}=A \beta_{x x}+B \beta_{x y}+C \beta_{y y}+D \beta_{x}+E \beta_{y} \\
& F^{* *}=F \\
& G^{* *}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these equations, we find that $A^{* *}=2, B^{* *}=0, C^{* *}=2$, $D^{* *}=24, E^{* *}=0, F^{* *}=5$, and $G^{* *}=0$. Thus, the PDE simplifies to

$$
2 u_{\alpha \alpha}+2 u_{\beta \beta}+24 u_{\alpha}+5 u=0 .
$$

Solving for $u_{\alpha \alpha}+u_{\beta \beta}$ gives

$$
u_{\alpha \alpha}+u_{\beta \beta}=-\frac{1}{2}\left(24 u_{\alpha}+5 u\right) .
$$

This is the canonical form of the elliptic PDE.

Part (d)

$$
u_{x x}+\operatorname{sech}^{4} x u_{y y}=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=0, C=\operatorname{sech}^{4} x, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}\left(\pm \sqrt{-4 \operatorname{sech}^{4} x}\right) \\
& \frac{d y}{d x}= \pm i \operatorname{sech}^{2} x .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=-4 \operatorname{sech}^{4} x$, is less than 0 for all x, which means that the PDE is elliptic. Therefore, the solutions to the ordinary differential equations are two distinct families of characteristic curves that lie in the complex plane. Integrating the characteristic equations, we find that

$$
y(x)= \pm i \tanh x+C_{0}
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-i \tanh x: & C_{0}=y+i \tanh x=\phi(x, y) \\
\text { Working with }+i \tanh x: & C_{0}=y-i \tanh x=\psi(x, y) .
\end{array}
$$

Since $\xi=\phi(x, y)=y+i \tanh x$ and $\eta=\psi(x, y)=y-i \tanh x$ are complex conjugates of one another, we introduce the new real variables,

$$
\begin{aligned}
& \alpha=\frac{1}{2}(\xi+\eta)=y \\
& \beta=\frac{1}{2 i}(\xi-\eta)=\tanh x,
\end{aligned}
$$

which transform the PDE to the canonical form. After changing variables $(x, y) \rightarrow(\alpha, \beta)$, the PDE becomes

$$
A^{* *} u_{\alpha \alpha}+B^{* *} u_{\alpha \beta}+C^{* *} u_{\beta \beta}+D^{* *} u_{\alpha}+E^{* *} u_{\beta}+F^{* *} u=G^{* *}
$$

where, using the chain rule,

$$
\begin{aligned}
& A^{* *}=A \alpha_{x}^{2}+B \alpha_{x} \alpha_{y}+C \alpha_{y}^{2} \\
& B^{* *}=2 A \alpha_{x} \beta_{x}+B\left(\alpha_{x} \beta_{y}+\alpha_{y} \beta_{x}\right)+2 C \alpha_{y} \beta_{y} \\
& C^{* *}=A \beta_{x}^{2}+B \beta_{x} \beta_{y}+C \beta_{y}^{2} \\
& D^{* *}=A \alpha_{x x}+B \alpha_{x y}+C \alpha_{y y}+D \alpha_{x}+E \alpha_{y} \\
& E^{* *}=A \beta_{x x}+B \beta_{x y}+C \beta_{y y}+D \beta_{x}+E \beta_{y} \\
& F^{* *}=F \\
& G^{* *}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{* *}=\operatorname{sech}^{4} x=\left(\beta^{2}-1\right)^{2}$, $B^{* *}=0, C^{* *}=\operatorname{sech}^{4} x=\left(\beta^{2}-1\right)^{2}, D^{* *}=0, E^{* *}=-2 \operatorname{sech}^{2} x \tanh x=2 \beta\left(\beta^{2}-1\right), F^{* *}=0$, and $G^{* *}=0$. Thus, the PDE simplifies to

$$
\left(\beta^{2}-1\right)^{2} u_{\alpha \alpha}+\left(\beta^{2}-1\right)^{2} u_{\beta \beta}+2 \beta\left(\beta^{2}-1\right) u_{\beta}=0
$$

$$
u_{\alpha \alpha}+u_{\beta \beta}+\frac{2 \beta}{\beta^{2}-1} u_{\beta}=0
$$

Solving for $u_{\alpha \alpha}+u_{\beta \beta}$ gives

$$
u_{\alpha \alpha}+u_{\beta \beta}=\frac{2 \beta}{1-\beta^{2}} u_{\beta} .
$$

This is the canonical form of the elliptic PDE.

Part (e)

$$
u_{x x}+6 y u_{x y}+9 y^{2} u_{y y}+4 u=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=6 y, C=9 y^{2}, D=0, E=0, F=4$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}\left(6 y \pm \sqrt{36 y^{2}-36 y^{2}}\right) \\
& \frac{d y}{d x}=3 y .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=36 y^{2}-36 y^{2}$, is equal to 0 for all y, which means that the PDE is parabolic. Therefore, there is one family of real characteristic curves in the $x y$-plane. Integrating the characteristic equation, we find that

$$
\ln |y|=3 x+C_{0} .
$$

So the characteristic curves are given by

$$
y(x)=A_{0} e^{3 x} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
C_{0}=\ln |y|-3 x=\phi(x, y) .
$$

Now we make the change of variables, $\xi=\phi(x, y)=\ln |y|-3 x . \eta$ can be chosen arbitrarily so long as the Jacobian of ξ and η is nonzero. We choose $\eta=y$ for simplicity. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*},
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, B^{*}=0$, $C^{*}=9 y^{2}=9 \eta^{2}, D^{*}=-9, E^{*}=0, F^{*}=4$, and $G^{*}=0$. Thus, the PDE simplifies to

$$
\begin{aligned}
& 9 \eta^{2} u_{\eta \eta}-9 u_{\eta}+4 u=0 \\
& u_{\eta \eta}=\frac{1}{9 \eta^{2}}\left(9 u_{\eta}-4 u\right) .
\end{aligned}
$$

This is the canonical form of the parabolic PDE.

Part (f)

$$
u_{x x}-\operatorname{sech}^{4} x u_{y y}=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=0, C=-\operatorname{sech}^{4} x, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}\left(\pm \sqrt{4 \operatorname{sech}^{4} x}\right) \\
& \frac{d y}{d x}= \pm \operatorname{sech}^{2} x .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=4 \operatorname{sech}^{4} x$, is greater than 0 for all x, which means that the PDE is hyperbolic. The two families of characteristic curves, therefore, are distinct and lie in the $x y$-plane. Integrating the characteristic equations, we find that

$$
y(x)= \pm \tanh x+C_{0} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-\tanh x: & C_{0}=y+\tanh x=\phi(x, y) \\
\text { Working with }+\tanh x: & C_{0}=y-\tanh x=\psi(x, y) .
\end{array}
$$

Make the change of variables, $\xi=\phi(x, y)=y+\tanh x$ and $\eta=\psi(x, y)=y-\tanh x$, so that the PDE takes the simplest form. Solving these two equations for x and y gives $x=\tanh ^{-1}\left[\frac{1}{2}(\xi-\eta)\right]$ and $y=\frac{1}{2}(\xi+\eta)$. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*},
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, C^{*}=0, F^{*}=0$, $G^{*}=0$,

$$
\begin{aligned}
& B^{*}=-4 \operatorname{sech}^{4} x=-\frac{1}{4}\left[(\xi-\eta)^{2}-4\right]^{2}, \\
& D^{*}=-2 \operatorname{sech}^{2} x \tanh x=\frac{1}{4}(\xi-\eta)\left[(\xi-\eta)^{2}-4\right], \\
& E^{*}=2 \operatorname{sech}^{2} x \tanh x=-\frac{1}{4}(\xi-\eta)\left[(\xi-\eta)^{2}-4\right] .
\end{aligned}
$$

Thus, the PDE simplifies to

$$
\begin{gathered}
-\frac{1}{4}\left[(\xi-\eta)^{2}-4\right]^{2} u_{\xi \eta}+\frac{1}{4}(\xi-\eta)\left[(\xi-\eta)^{2}-4\right]\left(u_{\xi}-u_{\eta}\right)=0 \\
u_{\xi \eta}+\frac{\xi-\eta}{4-(\xi-\eta)^{2}}\left(u_{\xi}-u_{\eta}\right)=0 \\
u_{\xi \eta}=\frac{\xi-\eta}{(\xi-\eta)^{2}-4}\left(u_{\xi}-u_{\eta}\right) .
\end{gathered}
$$

This is the first canonical form of the hyperbolic PDE. To get the second canonical form, we have to make the additional change of variables, $\alpha=\xi+\eta$ and $\beta=\xi-\eta$. The chain rule gives $u_{\xi \eta}=u_{\alpha \alpha}-u_{\beta \beta}, u_{\xi}=u_{\alpha}+u_{\beta}$, and $u_{\eta}=u_{\alpha}-u_{\beta}$. The PDE becomes

$$
u_{\alpha \alpha}-u_{\beta \beta}=\frac{2 \beta}{\beta^{2}-4} u_{\beta} .
$$

This is the second canonical form of the hyperbolic PDE.

Part (g)

$u_{x x}+2 \csc y u_{x y}+\csc ^{2} y u_{y y}=0$
Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=2 \csc y, C=\csc ^{2} y, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}\left(2 \csc y \pm \sqrt{4 \csc ^{2} y-4 \csc ^{2} y}\right) \\
& \frac{d y}{d x}=\csc y=\frac{1}{\sin y} .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=4 \csc ^{2} y-4 \csc ^{2} y$, is equal to 0 for all y, which means that the PDE is parabolic. Therefore, there is one family of characteristic curves in the $x y$-plane. Separating variables and integrating the characteristic equation, we find that

$$
-\cos y=x+C_{0}
$$

and the characteristic curves are given by

$$
y(x)=\cos ^{-1}\left(-x-C_{0}\right) .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
-C_{0}=x+\cos y=\phi(x, y) .
$$

Now we make the change of variables, $\xi=\phi(x, y)=x+\cos y . \eta$ can be chosen arbitrarily so long as the Jacobian of ξ and η is nonzero. We choose $\eta=y$ for simplicity. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*}
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, B^{*}=0$, $C^{*}=\csc ^{2} y=\csc ^{2} \eta, D^{*}=-\cot y \csc y=-\cot \eta \csc \eta, E^{*}=0, F^{*}=0$, and $G^{*}=0$. Thus, the PDE simplifies to

$$
\begin{gathered}
\left(\csc ^{2} \eta\right) u_{\eta \eta}-(\cot \eta \csc \eta) u_{\xi}=0 \\
\frac{1}{\sin ^{2} \eta} u_{\eta \eta}-\frac{\cos \eta}{\sin \eta} \frac{1}{\sin \eta} u_{\xi}=0
\end{gathered}
$$

$$
\begin{gathered}
u_{\eta \eta}=\frac{\cot \eta}{\csc \eta} u_{\xi} \\
u_{\eta \eta}=(\cos \eta) u_{\xi}
\end{gathered}
$$

This is the canonical form of the parabolic PDE.
This answer is in disagreement with the answer at the back of the book-there is an extra $\sin ^{2} \eta$ term on the right. I believe the book is in error.

Part (h)

$$
u_{x x}-5 u_{x y}+5 u_{y y}=0
$$

Comparing this equation with the general form of a second-order PDE, $A u_{x x}+B u_{x y}+C u_{y y}+$ $D u_{x}+E u_{y}+F u=G$, we see that $A=1, B=-5, C=5, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
& \frac{d y}{d x}=\frac{1}{2}(-5 \pm \sqrt{25-20}) \\
& \frac{d y}{d x}=\frac{1}{2}(-5 \pm \sqrt{5}) .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=25-20$, is equal to 5 , which means that the PDE is hyperbolic. The two families of characteristic curves, therefore, are distinct and lie in the $x y$ plane. Integrating the characteristic equations, we find that

$$
y(x)=\frac{1}{2}(-5 \pm \sqrt{5}) x+C_{0} .
$$

Solving for the constant of integration (or any convenient multiple thereof),

$$
\begin{array}{ll}
\text { Working with }-\sqrt{5}: & 2 C_{0}=2 y+(5+\sqrt{5}) x=\phi(x, y) \\
\text { Working with }+\sqrt{5}: & 2 C_{0}=2 y+(5-\sqrt{5}) x=\psi(x, y) .
\end{array}
$$

Now we make the change of variables, $\xi=\phi(x, y)=2 y+(5+\sqrt{5}) x$ and $\eta=\psi(x, y)=2 y+$ $(5-\sqrt{5}) x$, so that the PDE takes the simplest form. With these new variables the PDE becomes

$$
A^{*} u_{\xi \xi}+B^{*} u_{\xi \eta}+C^{*} u_{\eta \eta}+D^{*} u_{\xi}+E^{*} u_{\eta}+F^{*} u=G^{*},
$$

where, using the chain rule, (see page 11 of the textbook for details)

$$
\begin{aligned}
& A^{*}=A \xi_{x}^{2}+B \xi_{x} \xi_{y}+C \xi_{y}^{2} \\
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y} \\
& C^{*}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2} \\
& D^{*}=A \xi_{x x}+B \xi_{x y}+C \xi_{y y}+D \xi_{x}+E \xi_{y} \\
& E^{*}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& F^{*}=F \\
& G^{*}=G .
\end{aligned}
$$

Plugging in the numbers and derivatives to these formulas, we find that $A^{*}=0, B^{*}=-20, C^{*}=0$, $D^{*}=0, E^{*}=0, F^{*}=0$, and $G^{*}=0$. Thus, the PDE simplifies to

$$
\begin{gathered}
-20 u_{\xi \eta}=0 \\
u_{\xi \eta}=0 .
\end{gathered}
$$

This is the first canonical form of the hyperbolic PDE. If we make the additional change of variables, $\alpha=\xi+\eta$ and $\beta=\xi-\eta$, then the chain rule gives $u_{\xi \eta}=u_{\alpha \alpha}-u_{\beta \beta}, u_{\xi}=u_{\alpha}+u_{\beta}$, and $u_{\eta}=u_{\alpha}-u_{\beta}$. The PDE then becomes

$$
u_{\alpha \alpha}-u_{\beta \beta}=0 .
$$

This is the second canonical form of the hyperbolic PDE.

[^0]: ${ }^{1}$ Since $x<0$, we have to use $-x$ in the change of variables. Otherwise, we will not get the desired canonical form.

